Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.

Identifieur interne : 003098 ( Main/Exploration ); précédent : 003097; suivant : 003099

Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.

Auteurs : Ursula Scheerer [Allemagne] ; Robert Haensch ; Ralf R. Mendel ; Stanislav Kopriva ; Heinz Rennenberg ; Cornelia Herschbach

Source :

RBID : pubmed:19923196

Descripteurs français

English descriptors

Abstract

Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor treatment, and in APR overexpressing poplar, is discussed.

DOI: 10.1093/jxb/erp327
PubMed: 19923196
PubMed Central: PMC2803220


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.</title>
<author>
<name sortKey="Scheerer, Ursula" sort="Scheerer, Ursula" uniqKey="Scheerer U" first="Ursula" last="Scheerer">Ursula Scheerer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Haensch, Robert" sort="Haensch, Robert" uniqKey="Haensch R" first="Robert" last="Haensch">Robert Haensch</name>
</author>
<author>
<name sortKey="Mendel, Ralf R" sort="Mendel, Ralf R" uniqKey="Mendel R" first="Ralf R" last="Mendel">Ralf R. Mendel</name>
</author>
<author>
<name sortKey="Kopriva, Stanislav" sort="Kopriva, Stanislav" uniqKey="Kopriva S" first="Stanislav" last="Kopriva">Stanislav Kopriva</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19923196</idno>
<idno type="pmid">19923196</idno>
<idno type="doi">10.1093/jxb/erp327</idno>
<idno type="pmc">PMC2803220</idno>
<idno type="wicri:Area/Main/Corpus">003388</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003388</idno>
<idno type="wicri:Area/Main/Curation">003388</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003388</idno>
<idno type="wicri:Area/Main/Exploration">003388</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.</title>
<author>
<name sortKey="Scheerer, Ursula" sort="Scheerer, Ursula" uniqKey="Scheerer U" first="Ursula" last="Scheerer">Ursula Scheerer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Haensch, Robert" sort="Haensch, Robert" uniqKey="Haensch R" first="Robert" last="Haensch">Robert Haensch</name>
</author>
<author>
<name sortKey="Mendel, Ralf R" sort="Mendel, Ralf R" uniqKey="Mendel R" first="Ralf R" last="Mendel">Ralf R. Mendel</name>
</author>
<author>
<name sortKey="Kopriva, Stanislav" sort="Kopriva, Stanislav" uniqKey="Kopriva S" first="Stanislav" last="Kopriva">Stanislav Kopriva</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutamate-Cysteine Ligase (genetics)</term>
<term>Glutamate-Cysteine Ligase (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (genetics)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (enzymology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Sulfates (metabolism)</term>
<term>Sulfite Oxidase (genetics)</term>
<term>Sulfite Oxidase (metabolism)</term>
<term>Sulfur (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Expression des gènes (MeSH)</term>
<term>Glutamate-cysteine ligase (génétique)</term>
<term>Glutamate-cysteine ligase (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Oxidoreductases acting on sulfur group donors (génétique)</term>
<term>Oxidoreductases acting on sulfur group donors (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Soufre (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sulfates (métabolisme)</term>
<term>Sulfite oxidase (génétique)</term>
<term>Sulfite oxidase (métabolisme)</term>
<term>Végétaux génétiquement modifiés (enzymologie)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutamate-Cysteine Ligase</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Plant Proteins</term>
<term>Sulfite Oxidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutamate-Cysteine Ligase</term>
<term>Glutathione</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Plant Proteins</term>
<term>Sulfates</term>
<term>Sulfite Oxidase</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutamate-cysteine ligase</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Sulfite oxidase</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutamate-cysteine ligase</term>
<term>Glutathion</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines végétales</term>
<term>Soufre</term>
<term>Sulfates</term>
<term>Sulfite oxidase</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
<term>Gene Expression Regulation, Plant</term>
<term>Oxidation-Reduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Expression des gènes</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor treatment, and in APR overexpressing poplar, is discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19923196</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.</ArticleTitle>
<Pagination>
<MedlinePgn>609-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erp327</ELocationID>
<Abstract>
<AbstractText>Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor treatment, and in APR overexpressing poplar, is discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Scheerer</LastName>
<ForeName>Ursula</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Haensch</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mendel</LastName>
<ForeName>Ralf R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kopriva</LastName>
<ForeName>Stanislav</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herschbach</LastName>
<ForeName>Cornelia</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013431">Sulfates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="D050862">Oxidoreductases Acting on Sulfur Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.3.1</RegistryNumber>
<NameOfSubstance UI="D050876">Sulfite Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.99.2</RegistryNumber>
<NameOfSubstance UI="C019618">adenylylsulfate reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.2</RegistryNumber>
<NameOfSubstance UI="D005721">Glutamate-Cysteine Ligase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005721" MajorTopicYN="N">Glutamate-Cysteine Ligase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050862" MajorTopicYN="N">Oxidoreductases Acting on Sulfur Group Donors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013431" MajorTopicYN="N">Sulfates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050876" MajorTopicYN="N">Sulfite Oxidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19923196</ArticleId>
<ArticleId IdType="pii">erp327</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erp327</ArticleId>
<ArticleId IdType="pmc">PMC2803220</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2007;30(4):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18607078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):459-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Apr;55(398):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Dec;121(4):1169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10594104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11102-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Oct;12(4):875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9375399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):1071-1078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Sep;9(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17853359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(1):89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 14;276(50):46989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Nov 27;580(27):6384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Nov;76(3):579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):446-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):1047-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8552710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Apr 24;15(8):3479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3575098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:625-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1998 Apr 5;58(2-3):121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10191380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Nov;77(11):6670-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16592917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jul 31;40(30):9040-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):168-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1872-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Sep 8;165(13):1390-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jun;55(401):1283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Dec;45(12):1889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Apr;30(4):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1406-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):147-157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Dec;88(4):1407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Nov 26;12(22):8711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6095209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(6):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Oct;20(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 14;275(2):930-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):15-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):1408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Jun;3(3):211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Apr;97(4):479-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16464881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):435-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16315075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):633-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1992 Sep 1;286 ( Pt 2):313-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1530563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Sep;9(5):620-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Symp Soc Exp Biol. 1973;27:65-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4148886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Biophys. 1999;31(1):19-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10505666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(6):999-1012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Jun;51(347):1077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):651-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C. 2005 Mar-Apr;60(3-4):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):337-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1831-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jun;6(6):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Mar;29(3):382-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:141-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):897-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Sep;97(1):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jan;31(1):123-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(3):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16386330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997;203(3):362-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9431683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jul;54(388):1701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Apr;32(4):349-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jul;6(4):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15248123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 10;281(10):6884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):309-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Dec;109(4):1141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8539285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):490-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):858-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Fribourg-en-Brisgau</li>
</region>
<settlement>
<li>Fribourg-en-Brisgau</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Haensch, Robert" sort="Haensch, Robert" uniqKey="Haensch R" first="Robert" last="Haensch">Robert Haensch</name>
<name sortKey="Herschbach, Cornelia" sort="Herschbach, Cornelia" uniqKey="Herschbach C" first="Cornelia" last="Herschbach">Cornelia Herschbach</name>
<name sortKey="Kopriva, Stanislav" sort="Kopriva, Stanislav" uniqKey="Kopriva S" first="Stanislav" last="Kopriva">Stanislav Kopriva</name>
<name sortKey="Mendel, Ralf R" sort="Mendel, Ralf R" uniqKey="Mendel R" first="Ralf R" last="Mendel">Ralf R. Mendel</name>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Scheerer, Ursula" sort="Scheerer, Ursula" uniqKey="Scheerer U" first="Ursula" last="Scheerer">Ursula Scheerer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19923196
   |texte=   Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19923196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020